

Asyncio background tasks

[image: buildstatus] [https://travis-ci.org/eerimoq/asyncbg]
[image: coverage] [https://coveralls.io/github/eerimoq/asyncbg]

Asyncio background tasks

Asyncio background tasks in Python 3.7 and later.

Run CPU intensive long running tasks without blocking the asyncio
loop, implemented as a lightweight asyncio layer on top of the
multiprocessing module.

Alternatively run tasks in other threads.

Project homepage: https://github.com/eerimoq/asyncbg

Documentation: https://asyncbg.readthedocs.org/en/latest

Installation

pip install asyncbg

Examples

There are more examples in the examples folder [https://github.com/eerimoq/asyncbg/tree/master/examples].

Call

Call work(a, b) in another process. The script output is Result: 9.

import asyncio
import asyncbg

def work(a, b):
 return a + b

async def main():
 result = await asyncbg.call(work, 4, 5)
 print(f'Result: {result}')

asyncio.run(main())

Process pool

Create a process pool with two workers, and call work() three
times in it (up to two callbacks called in parallel).

import asyncio
import asyncbg

def work():
 pass

async def main():
 with asyncbg.ProcessPoolExecutor(max_workers=2) as pool:
 await asyncio.gather(pool.call(work),
 pool.call(work),
 pool.call(work))

asyncio.run(main())

Call thread

Call work(a, b) in another thread. The script output is Result: 9.

import asyncio
import asyncbg

def work(a, b):
 return a + b

async def main():
 result = await asyncbg.call_thread(work, 4, 5)
 print(f'Result: {result}')

asyncio.run(main())

Thread pool

Create a thread pool with two workers, and call work() three times
in it (up to two callbacks called in parallel).

import asyncio
import asyncbg

def work():
 pass

async def main():
 with asyncbg.ThreadPoolExecutor(max_workers=2) as pool:
 await asyncio.gather(pool.call(work),
 pool.call(work),
 pool.call(work))

asyncio.run(main())

Functions and classes

	
asyncbg.call(callback, *args, **kwargs)

	Coroutine calling given callback with given arguments in
another process.

Returns the value returned by the callback, or raises the
exceptions raised by the callback.

Callback positional and keyword arguments can not be used for
output, as the multiprocessing module does not support that.

Call work() in a worker process:

>>> def work():
>>> pass
>>>
>>> asyncio.run(asyncbg.call(work))

	
class asyncbg.ProcessPoolExecutor(max_workers=None, mp_context=None, initializer=None, initargs=())

	Same as concurrent.futures.ProcessPoolExecutor, but with the
call() method added.

Index

 C
 | P

C

 	
 	call() (in module asyncbg)

P

 	
 	ProcessPoolExecutor (class in asyncbg)

 nav.xhtml

 Table of Contents

 		
 Asyncio background tasks

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

